Tendencias

Primera transferencia de recuerdos entre seres vivos

Para lograr esta hazaña, los investigadores aplicaron leves descargas eléctricas a las colas de una especie de caracol marino

Los científicos extrajeron el ARN del sistema nervioso de los caracoles marinos que recibieron los choques. Foto: Archivo
25/05/2018 |17:04
EL UNIVERSAL San Luis Potosí
RedactorVer perfil

Biólogos de la UCLA han transferido por primera vez un recuerdo entre seres vivos, en concreto, de un caracol marino a otro, creando una memoria artificial inyectando ARN de uno a otro.

La investigación se ha publicado en 'eNeuro', la revista en línea de la Society for Neuroscience.

El ARN, o ácido ribonucleico, ha sido ampliamente conocido como el 'mensajero' celular que fabrica proteínas y lleva a cabo las instrucciones del AND a otras partes de la célula. Ahora se entiende que tiene otras funciones importantes además de la codificación de proteínas, incluida la regulación de una variedad de procesos celulares implicados en el desarrollo y la enfermedad.

Para lograr esta hazaña, los investigadores aplicaron leves descargas eléctricas a las colas de una especie de caracol marino llamado 'Aplysia'. Los caracoles recibieron cinco descargas de cola, una cada 20 minutos, y luego cinco más 24 horas después.

Los impactos mejoraron el reflejo defensivo de retirada del caracol, una respuesta que muestra para protegerse de posibles daños. Cuando los investigadores tocaron los caracoles, encontraron que aquellos a los que se les había administrado los amortiguadores mostraban una contracción defensiva que duraba un promedio de 50 segundos, un tipo simple de aprendizaje conocido como "sensibilización".

Aquellos a los que no se les había administrado los amortiguadores se contrajeron durante solo un segundo.

Los científicos extrajeron el ARN del sistema nervioso de los caracoles marinos que recibieron los choques de la cola el día después de la segunda serie de choques, y también de los caracoles marinos que no recibieron ningún impacto.

Luego, el ARN del primer grupo (sensibilizado) se inyectó en siete caracoles marinos que no habían recibido ningún choque, y el ARN del segundo grupo se inyectó en un grupo control de otros siete caracoles que tampoco habían recibido ningún choque.

Sorprendentemente, los científicos descubrieron que los siete que recibieron el ARN de los caracoles a los que se aplicaron los amortiguadores se comportaron como si ellos mismos hubieran recibido los golpes de cola: exhibieron una contracción defensiva que duró un promedio de aproximadamente 40 segundos. Como se esperaba, el grupo de control de caracoles no mostró la contracción prolongada.

"Es como si transfiriéramos la memoria", señala el profesor de Biología y Fisiología Integradas y de Neurobiología de la UCLA (Universidad de California en Los Ángeles) David Glanzman, también autor principal del estudio y miembro del Instituto de Investigación Cerebral de la Universidad.

A continuación, los investigadores agregaron ARN a placas de Petri que contienen neuronas extraídas de diferentes caracoles que no recibieron descargas.

Algunos platos tenían ARN de caracoles marinos a los que se les había aplicado descargas eléctricas en la cola, y algunos platos contenían ARN de caracoles a los que no se les había administrado descargas. Algunos de los platos contenían neuronas sensoriales y otros contenían neuronas motoras, que en el caracol son responsables del reflejo.

Cuando a un caracol marino se le aplican descargas eléctricas en la cola, sus neuronas sensoriales se vuelven más excitables.

Curiosamente, los investigadores descubrieron que agregar ARN de los caracoles a los que se les había administrado descargas también producía una mayor excitabilidad en las neuronas sensoriales de una placa de Petri; no lo hizo en las neuronas motoras. Agregar ARN de un caracol marino al que no se le administraron descargas de cola no produjo esta mayor excitabilidad en las neuronas sensoriales.

En el campo de la neurociencia, durante mucho tiempo se ha pensado que los recuerdos se almacenan en sinapsis (cada neurona tiene varios miles de sinapsis). Pero Glanzman tiene una visión diferente, ya que cree que los recuerdos se almacenan en el núcleo de las neuronas.

"Si los recuerdos se almacenan en las sinapsis, no hay forma de que nuestro experimento haya funcionado", cuestiona Glanzman, que considera que el caracol marino es un modelo excelente para estudiar el cerebro y la memoria.

Para Glanzman, los científicos saben más sobre la biología celular de esta forma simple de aprendizaje en este animal que cualquier otra forma de aprendizaje en cualquier otro organismo.

Los procesos celulares y moleculares parecen ser muy similares entre el caracol marino y los humanos, a pesar de que el caracol tiene alrededor de 20 mil neuronas en su sistema nervioso central y se cree que los humanos tienen alrededor de 100 mil millones.

Según indica Glanzman, es posible que en el futuro el ARN se pueda utilizar para despertar y restablecer recuerdos que han estado inactivos en las primeras etapas de la enfermedad del Alzheimer o por trastornos de estrés postraumático.

Tanto él como sus colegas publicaron investigaciones en la revista 'eLife' en 2014, indicando que se pueden restaurar los recuerdos perdidos. A pesar de que existen muchos tipos de ARN, Glanzman pretende identificar los tipos de ARN que pueden usarse para transferir recuerdos en investigaciones futuras.